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Abstract
We study the correlation functions of parafermionic currents and disorder fields
in the ZN symmetric conformal field theory perturbed by the first thermal
operator. Following the ideas of Al Zamolodchikov (Zamolodchikov 1991
Nucl. Phys. B 348 619, Zamolodchikov 1990 Nucl. Phys. B 342 695 and
Zamolodchikov 1995 Int. J. Mod. Phys. A 10 1125), we develop for the
correlation functions the conformal perturbation theory at small scales and
the form factors’ spectral decomposition at large ones. For all N, there is an
agreement between the data at the intermediate distances. We consider the
problems arising in the description of the space of scaling fields in perturbed
models, such as null vector relations, equations of motion and a consistent
treatment of fields related by a resonance condition.

PACS numbers: 05.50.+q, 11.25.Hf

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The calculation of correlation functions is one of the most interesting problems in the two-
dimensional integrable quantum field theory. Complete exact solutions of this problem were
found for free field models, for example the Ising model, and for the conformal field theories
(CFTs).

In massive integrable field theories, an elegant way of studying the behavior of two-
point correlation functions was proposed by Zamolodchikov in [1]. In the case of the
perturbed Lee–Yang model, he studied short- and long-distance asymptotics of the two-
point correlation function of primary fields. The short-distance behavior of the correlation
function was investigated by developing the infrared (IR) safe perturbation theory [1], based
on the knowledge of the exact vacuum expectation values (VEVs) of local fields found by
non-perturbative methods [2–4]. The correlators in the infrared region were given by using a
form factor spectral decomposition [5, 6]. A very good agreement between the asymptotics at
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the intermediate distances Mr ∼ 1 allowed us to claim that correlation functions in the Lee–
Yang model are effectively described in this approach at all distances. Further development
has shown that the method proposed in [1] is a simple and effective tool for an analysis of the
basic properties of correlation functions in different integrable massive models.

In this paper, we continue our study [7, 8] of scaling fields in parafermionic CFT [9, 10]
with the central charge

c = 2(N − 1)/(N + 2), N = 2, 3, . . . , (1)

perturbed by the first thermal operator ε1:

A = ACFT + λ

∫
d2x ε1(x). (2)

The resulting theory is integrable and ZN symmetric. Depending on the sign of λ, the system
is in the ordered or the disordered phase. We fix the λ > 0 phase where the Z̃N symmetry is
destroyed and vacuum expectation values of disorder operators are non-zero. In this scaling
model [11, 12], we study, within the approach of [1], the correlation functions of disorder
operators and parafermionic currents. These objects, as well as correlators of some W -algebra
descendants, are not so easy for a direct investigation mainly because of the resonances, which
appear in the construction. Namely, following the procedure of [1], we need to study the
situations where the scaling dimensions Da and Db of some fields Oa and Ob satisfy the
condition

Da = Db + 2n
(
1 − �ε1

)
, n > 0. (3)

In this case, the field Oa has nth-order resonance with the field Ob and there is an ambiguity
in defining the renormalized field Oa:

Oa → Oa + const λnOb. (4)

This typically results in a logarithmic scaling of the field Oa [4]. We observed that according
to our general formulae, the form factors of fields satisfying (3) formally coincide as functions
of rapidities. This creates a problem in defining the form factors of such scaling fields, since
it is expected from the general settings [13, 14] that there is a one-to-one correspondence
between conformal and scaling fields. We propose to discuss a general prescription for the
form factors of the fields possessing resonances in a separate publication. In this paper, we
consider some examples of the phenomena.

On the other hand, by studying the short-distance behavior of the correlators, we found
that the terms in the perturbative expansion, which correspond to fields with condition (3),
formally diverge for integer parameters N. To proceed further with these cases, we use the fact
that our exact expressions are defined for the models with arbitrary number N. We provide
an analytic continuation over this parameter and obtain finite results for the correlators. We
check that our prescription leads to correct expressions for the Ising model (N = 2 case) [15],
as well as for other known cases.

Similarity between the long- and short-distance asymptotics, which we found for all
N, can also be considered as an additional confirmation, supporting the consistency of the
proposed form factors and the expressions for the short-distance expansions, for VEVs and
for the normalizations of the scaling fields.

We choose to study the ZN invariant Ising model, since it has several nice properties. It
is related to a statistical system, which has a simple and clear description [9, 16] and many
important physical applications, while the operators of this lattice model, in general, have
an interesting quasi-locality property [17, 18] in the scaling limit. We recall the notions of
the lattice ZN model in section 2. In the critical points, the lattice model is described by the
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Figure 1. ZN Ising model at the lattice.

parafermionic CFT with the central charge (1). In section 3, we introduce necessary definitions
and collect basic facts about this CFT, concentrating attention on the algebraic structure of the
space of conformal fields. This information is essential for further analysis of the space of form
factors of local fields in the case of a massive integrable model, which we consider in section 4
as the model of QFT, defined as scattering theory with the simple ZN symmetric S matrix [12].
We discuss an algebraic prescription for the form factors of the scaling fields. In particular,
we consider the actions of deformed parafermionic currents in the space of form factors and
study related questions, such as deformation of the quantum equations of motion, null vector
relations and a prescription for form factors of fields, satisfying the resonance condition (3).
Finally, the correlation functions of the scaling fields of the massive integrable model (2) are
discussed in section 5. We concentrate our attention on the conformal perturbation theory and
demonstrate how to apply the quantum equation of motion to the computing coefficients of the
perturbation theory. We discuss the regularization prescription for the resonances, appearing
in the perturbation theory, and also provide the results of numerical computations.

2. Lattice ZN -Ising model

In this section, following [9] we recall the basic definitions of the two-dimensional lattice
model, generalizing the well-known Z2-symmetric Ising model to the case with the ZN,N =
2, 3, . . . , symmetry.

We consider the model of the statistical mechanics defined at the square lattice. Let spin
variables σ be associated with the sites of the lattice and take values in the group ZN , i.e.
σ = ωk (k = 0, . . . , N − 1), where ω = exp

(
2π i
N

)
. We study the local theory where the

Boltzmann weight e−H(σ,σ ′) = W(σ, σ ′) depends on spins σ and σ ′ situated at neighboring
sites, see figure 1. The partition sum of the model is, by definition,

Z =
∑
spins

∏
edges

W(σ, σ ′). (5)

In the ZN Ising model, the Boltzmann weights satisfy the ZN symmetry W(σ, σ ′) =
W(ωσ, ωσ ′) and the reality condition W(σ, σ ′) = W(σ †, σ ′†). It means that, up to a
normalization constant, the function W(σ, σ ′) has the form

W(σ, σ ′) =
N−1∑
k=0

Wk(σ
†σ ′)k, W0 = 1, (6)

where the parameters Wk of the model are real non-negative numbers satisfying the equation
Wk = WN−k .

3
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Figure 2. Two-point correlator of disorder operators μk and μ
†
k .

Important information about the model is encoded in a set of its correlation functions.
For example, the correlation functions of the spin operators are defined at the lattice as〈

σk1(x1) · · · σks
(xs)

〉 = 1

Z
∑
spins

σ k1(x1) · · · σ ks (xs)
∏
edges

W(σ, σ ′).

We will study a system in the thermodynamic limit, assuming appropriate periodic conditions
at infinity. The one-point correlation functions 〈σk〉 serve as a measure of order in the system.
Other important lattice operators are the disorder operators [10, 17, 18]. Consider a directed
path � going through the points of a dual lattice and intersecting the bonds of the original
lattice. Let all weights Ws at the bonds, crossed by path �, be changed in order to become
W̃ (k)

s = Wsω
sk . The presence of a dislocation along the path introduces in the system a

fractional domain wall that favors a discontinuity in the value of the neighboring spins by k.
The partition function Z̃� on the inhomogeneous lattice now differs from the original one. We
interpret the dislocation as an insertion of two operators μk and μ

†
k = μN−k situated at the

sites of the dual lattice as is shown in figure 2.
By definition, the two-point correlation function of conjugate disorder operators is given

as 〈
μk(x1)μ

†
k(x2)

〉
�

= 1

Z
Z̃�.

Here, x1,2 are the coordinates of the corresponding operators. This interpretation turns out to
be useful since the dependence on the contour � is not very strong. As in the Ising model
[17], one can make contour deformations by closed paths, without changing the correlation
function. With the freedom of making these deformations, we use the prescription of attaching
contours from infinity to each of the points xj of the dual lattice, as is shown in figure 3. Now,
the definition of the two-point correlation functions can be immediately extended to the multi-
point case, including disorder operators with a total non-zero ZN charge.

In a general case of correlators of spin and disorder operators, only an absolute value
of the correlation function remains to be path independent, and one should fix the relative
position of contours [10]. This is because the correlation functions of the product of spin
and disorder operators, before and after a complete counterclockwise rotation of the disorder
variable around the order variable, differ by a phase ω−kl . Equivalently, this happens whenever
a μk-path crosses a σl variable. Operators with these properties are called mutually quasi-local
with the exponent γkl = −kl/N .

Order and disorder parameters are basic operators in the theory. Other operators are
constructed as their operator products. In general, if the distance |x −y| between the operators
is much smaller than the correlation length, then the local operators ψl,k , appearing at the
operator product

σl(x)μk(y) = Clk(x − y)ψl,k(x) + · · · ,
4
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Γ μΝ−κ μκ2

Γ1

Figure 3. Correlation function 〈μkμN−k〉.

do obey the parastatistics [18]. In particular, we will further study the correlation functions of
two parafermionic currents ψ = ψ1,1 and ψ † in the scaling limit.

Under the Krammers Wannier duality [17], order parameters become disorder parameters
and vice versa. The hyperplane of self-duality has the dimension

[
N
4

]
. For the Ising model

(N = 2 case) and three-state Potts model (N = 3 case), the system has a second-order phase
transition at the self-dual point. For N = 4, it coincides with the well-known Ashkin–Teller
model. For prime N � 5, the ZN theory has, as a rule, three phases (ordered, disordered and
Kosterlitz–Thouless phases). For non-prime N, the phase structure is more complicated. As
an example, we consider the phase diagram of the Z5 model [16], see figure 4.

Here phase I, the ordered phase, is characterized by the conditions 〈σl〉 �= 0 and 〈μk〉 = 0.
In the disordered phase II, the situation is inverse: 〈σl〉 �= 0 and 〈μk〉 = 0. Finally, in the
Kosterlitz–Thouless phase III, the expectation values of the operators of both types are zero
〈σl〉 = 〈μk〉 = 0. The line FB denotes the self-duality region. It contains two symmetrically
situated ‘bifurcation points’ C and C∗. Along the line CC∗, the model has a first-order phase
transition and ordered and disordered phases may coexist. The points C and C∗ are integrable
and critical [16, 28]. The theory in these points has ZN × Z̃N symmetry and is described by
the continuous parafermionic CFT constructed in [9]. In the scaling limit in the vicinity of a
critical point the order σl and disorder μk operators, as well as parafermions ψ , are described
by the fields, depending on the continuous space parameters. We preserve for these fields the
same notations as on the lattice.

Due to the conformal invariance and infinite-dimensional symmetry of the critical theory
[19], the analysis of its correlation functions, as well as the structure of its space of states,
simplifies drastically. This was described in details in [9, 10]. Based on CFT results, one
can study the basic properties of the correlation functions of the ZN models in the vicinity
of the critical point by application of the conformal perturbation theory. Again, the simplest
perturbations are those which are integrable due to the presence of an infinite set of integrals
of motion [13]. Different integrable perturbations of the conformal field theories [9] were
studied in [11].

In this paper, we study a vicinity of the critical point C in phase II, where temperature
deformation leads to the appearance of the finite correlation length and to the non-zero vacuum
expectation value of the disorder parameters [11, 12, 20]. In the QFT language, this is the
massive perturbation of parafermionic CFT (2) by the most relevant first thermal operator ε1,
which destroys the dual Z̃N symmetry and preserves the symmetry ZN .

One of the questions which we would like to address in our study is a structure of the
space of scaling fields. We expect that the space of composite quasi-local fields constructed
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Figure 4. The phase diagram of the Z5 model.

from operators σk and μl in the vicinity of the critical point will be essentially the same, as
in the CFT. Let us note that this statement was supported by several results on counting of
local operators in various integrable models [14, 22]. To understand this problem, we tried
to apply in [7, 8] the knowledge of the algebraic structure of lattice operators, which is based
on a deformation of conformal algebras [23–26]. According to this idea, we first recall the
structure of quasi-local fields in the CFT point. Then, we will try to apply the clear and simple
algebraic scheme for the investigations of matrix elements of scaling fields on the basis of
asymptotic states and also for studying their correlation functions off-criticality.

3. Space of states in parafermionic CFT

In this section, we recall basic facts [9, 10] about the conformal field theory with the
parafermionic symmetry which describes critical points of the ZN Ising model [9] and related
models [32].

3.1. Parafermionic symmetry

In the conformal limit the order σk and disorder μk parameters, which determine long-range
correlations of spins and dual spins, have the anomalous dimensions

2dk = k(N − k)

N(N + 2)
. (7)

Their ZN and dual Z̃N charges, respectively, are equal to k. Under the action of the ZN

symmetry, spin fields transform as

σk → ωknσk, n ∈ Z. (8)

The transformation law for operators μk under the action of the dual Z̃N symmetry looks
similar:

μl → ωln′
μl, n′ ∈ Z. (9)

The spin and disorder fields are the basic operators in the theory. All other fields are constructed
from them. The composite fields are naturally separated into families with the fixed additive
ZN ×Z̃N charges (k, l). The members of the family behave under the ZN ×Z̃N transformation
as

� → ωkn+ln′
�, n, n′ ∈ Z.

6
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The parafermionic fields ψk and ψk generalizing the usual Ising model fermions appear in the
OPE of the order and disorder fields:

σk(z, z)μk(0, 0) = |z|−4dk z�k [ψk(0) + · · ·],
σk(z, z)μ

†
k(0, 0) = |z|−4dk z�k [ψk(0) + · · ·].

(10)

These currents are holomorphic and generate the infinitely dimensional symmetry due to the
conservation laws

∂zψk = 0, ∂zψ̄k = 0. (11)

We concentrate our attention on the simplest solution of the associativity condition for the
operator algebra of currents, which corresponds to CFT with the central charge (1), and the
conformal dimensions of currents:

�k = k(N − k)

N
. (12)

The fields ψ = ψ1 (and respective anti-chiral currents) are the basic ones in the parafermionic
algebra. It is convenient for us to consider, as well, conjugate currents ψN−1 = ψ †.

In the conformal model, the space of states splits naturally into a direct sum of subspaces
with the specified ZN × Z̃N charge (k, l):

{F } = ⊕{F }[m,m], N � m,m � 1 − N, (13)

where [m,m] = [k + l, k − l] ,m + m ∈ 2Z. In these notations, parafermionic currents and
order–disorder fields belong to the following subspaces:

ψ ∈ {F }[2,0], ψ † ∈ {F }[−2,0],

ψ ∈ {F }[0,2], ψ
† ∈ {F }[0,−2], (14)

σk ∈ {F }[k,k], μk ∈ {F }[k,−k].

Conformal fields are classified according to the representations of the parafermionic algebra.
The action of the parafermionic generators Aν

(
A†

ν

)
is defined by the OPE

ψ(z)�[m,m̄] =
∑

z− m
N

+n−1A 1+m
N

−n�[m,m̄],

ψ †(z)�[m,m̄] =
∑

z
m
N

+n−1A
†
1−m
N

−n
�[m,m̄].

(15)

Note that if �[m,m̄] ∈ F[m,m̄] has the conformal dimensions (d, d̄), then the conformal
dimensions of fields

Aν�[m,m̄] ∈ {F }[m+2,m̄], A†
ν�[m,m̄] ∈ {F }[m−2,m̄]

are (d − ν, d̄).
Order and disorder fields are the primaries of the parafermionic algebra. For instance, the

following equations hold for n � 0:

A 1+k
N

+nμk = A
†
1−k
N

+n+1
μk = 0, Ā 1−k

N
+n+1μk = Ā

†
1+k
N

+n
μk = 0. (16)

All other fields of the model are obtained by the action of the currents ψ, ψ̄ on the fields μk .
The space of states of the CFT decomposes into a direct sum of irreducible representations of
the parafermionic algebra:

{F } = ⊕N−1
k=0 [μk]A,Ā. (17)

This space can also be obtained by an application of parafermionic generators to the order
parameters σk . Moreover, in some situations we will need another infinite symmetry
description of parafermionic CFT, namely the W symmetry, which we recall in the following
subsection.

7
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3.2. W algebra symmetry

The space of fields in parafermionic CFT allows a classification with respect to another infinite
dimensional symmetry algebra, the so-called WN algebra [27]. The generators of the latter
W2(z),W3(z), . . . appear at the operator product of parafermionic currents:

ψ(z)ψ †(0) = 1

z2�1

(
1 + z2 N + 2

N
W2(0) + z3

(
1

N
3
2

W3(0) +
N + 2

2N
∂W2(0)

)
+ · · ·

)
. (18)

Here, W2 currents with spin-2 generate Virasoro algebra with the central charge being given
by equation (1). The currents W3 have spin-3. They generate the whole algebra, including the
higher spin currents, which are omitted in equation (18).

Currents of W algebra, and respective anti-chiral currents, have zeroth ZN charges.
Acting on the highest weight fields, they create an irreducible representation. From the
viewpoint of the WN × W̄N symmetry, each of the spaces [μk]A,Ā expands into a direct sum
of representations. Namely, let us denote as (ψ †)lμk the field with the minimal conformal
dimension, which can be obtained by the l-times application of the parafermionic generators
ψ † to μk:

(ψ †)lμk = A
†
2l−1−k

N

A
†
2l−3−k

N

· · · A†
1−k
N

μk. (19)

Its conformal dimensions are easily computed from (7). Then, up to a normalization, the
following relations take place:

�
(k)

k−2l,−k+2l̄
= (ψ †)l(ψ)l̄μk, l, l̄ = 0, 1, . . . , k,

�
(k)

k+2l,−k−2l̄
= (ψ)l(ψ

†
)l̄μk, l, l̄ = 0, 1, . . . , N − k.

(20)

These fields �
(k)
m,m̄ are the W algebra primaries. The action of the generators of W algebra

on it creates the irreducible representation
[
�

(k)
m,m̄

]
W,W̄

. The explicit values of the conformal

dimensions
(
d(k)

m , d̄(k)
m

)
of these fields are given as follows:

d(k)
m = (k + 1)2 − 1

4(N + 2)
− m2

4N
, −m � k � m. (21)

For the cases, when |m| > k, we use the relation d(k)
m = d

(N−k)
m−N , which follows from the ZN

symmetry condition:

�
(k)
mm̄ = �

(N−k)
m−N,−N+m̄. (22)

For example, the physically important energy fields εk = �
(2k)
0,0 are among these primaries.

Operators εk are local with respect to all fields and have the conformal dimensions

Dk = k(k + 1)/(N + 2). (23)

We refer to paper [9] for further details. Let us only comment here that the ZN symmetric
parafermionic CFT can be equivalently considered as a particular case of the conformal field
theory WMp

N , introduced in [27]. Namely, for the fixed value of N it has the smallest
central charge (1) among all rational unitary minimal conformal theories with the extended
WN algebra, which corresponds to the parameter p = N + 1.

We will use the above-represented conformal data in the following sections to describe
the perturbed conformal operators, for which we will again preserve the same CFT notations.

8
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4. Form factor approach

Now we turn to the operators in the corresponding massive integrable theory (2), which allows
several equivalent descriptions. In this section, we describe it as a two-dimensional QFT model
with the factorized scattering of ZN charged particles. The particles a ∈ {1, . . . , N − 1} in
the ZN (N = 2, 3, 4, . . .) symmetric models have masses [20]

Ma = M
sin(πa/N)

sin(π/N)
. (24)

The antiparticle a† is, by definition, identified with the particle N − a. The scattering matrix
of the lightest particles a = 1 has a simple form [12]:

S11(β) = sinh
(

β

2 + iπ
N

)
sinh

(
β

2 − iπ
N

) . (25)

The S matrices for higher particles are also diagonal and can be extracted from S11, according
to a standard bootstrap prescription. For example, the scattering matrix between particle 1 and
antiparticle 1† is S11†(β) = S11(iπ − β).

The knowledge of the exact spectrum (24) and the scattering matrix (25) allows us to
study the correlation functions of the theory, by using its spectral decomposition into a series
of form factors. The form factors

〈O(x)|β1, . . . , βn〉a1,...,an
(26)

of the scaling field O(x) are matrix elements of this operator in a basis of asymptotic states,
formed by particle creation operators. We assume that the particles, labeled by a1, . . . , an,
have rapidities β1, . . . , βn. Function (26) should satisfy to some analytical properties and,
also, to a set of functional equations the so-called form factor axioms [5, 6], to guarantee the
(quasi)locality of scaling fields.

A usual problem in the form factor approach (see, for example, [29–31] for the ZN Ising
model case) is that it is not so easy to determine which scaling field is described by the given
functions, satisfying proper functional equations and analyticity conditions. Moreover, for
a matching with short-distance formulae, it is necessary to determine the normalization of
the scaling fields, described by form factors. In our construction [7, 8], we proposed some
algebraic approach to solve these problems. Still, there are many subtle questions in this
direction. We would like to discuss some of them in the following sections.

4.1. Construction of free fields for form factors

In [7, 8], we have followed the algebraic approach [23, 25, 26, 33, 34] to the form factors of
the scaling limit of the ABF model [32]. This lattice model falls into the same universality
class, as the ZN Ising model. In the corner transfer matrix approach, its hidden symmetry is
a deformation of CFT symmetry algebras (7)–(23). We explore algebraic maps in the space
of form factors to produce exact expressions for form factors of scaling fields. Our basic
prescription, derived in [7, 8] for form factors, can be reformulated in short as follows. We

9
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introduce the notations3

B†(β)
(k)
m,m̄ = e

m−m̄
2N

β√
2 sin π

N

∑
a=±

a e
iπ
2N

(k+1− m−m̄
2 )aZ†

a(β),

B(β ′)(k)
m,m̄ = − e− m−m̄

2N
β ′√

2 sin π
N

∑
b=±

b e
iπ
2N

(−k−1− m−m̄
2 )bZb(β

′).

(27)

The explicit expressions for the form factors of fields (ψ †)l(ψ̄)l̄μk in the perturbed theory are
given for m = k − 2l, m̄ = k − 2l̄ as

〈(ψ †)l(ψ̄)l̄μk|{β}, {β ′}〉(n,n′) = C
(k)
m,m̄

〈〈
n∏
1

B(βj )
(k)
m,m̄

n′∏
1

B†(β ′
j )

(k)
mm̄

〉〉
. (28)

We assume in this equation that the form factor is zero unless the ZN neutrality condition
2(n′ − n) = m + m̄ is satisfied. The label n stands for the number of lightest antiparticles 1†,
carrying the ZN charge −2, and n′ means the number of particles 1 with the ZN charge 2.
The constant C

(k)
m,m̄ is determined by the normalization of the scaling field. In what follows,

we will specify that its value for spinless fields and for parafermionic currents is in agreement
with the conformal normalization. In equation (28), we used a shorthand notation for the state
with these numbers of particles and antiparticles:

|{β}, {β ′}〉(n,n′) ≡ |β1, . . . , βn, β
′
1, . . . , β

′
n′ 〉1†···1†,1···1. (29)

The symbol of the ordered product of particle creation operators in equation (28) is used for
the object

n∏
B(βj ) = B(β1) · · ·B(βn), (30)

which is a linear combination of the products of exponential-free bosonic fields Z±(β); see
[23] for details. The expectation value of a product of operators Za(β) and Z†

a(β) over the
Fock vacuum can be computed by applying the Wick theorem:〈〈
Za1(β1) · · ·Zan

(βn)Z†
b1

(β ′
1) · · ·Z†

bm
(β ′

m)
〉〉 =

∏
i<j

〈〈Zai
(βi)Zaj

(βj )〉〉

×
∏
i<j

〈〈
Z†

bi
(β ′

i )Z
†
bj

(β ′
j )

〉〉∏
i,j

〈〈
Zaj

(βj )Z†
bi
(β ′

i )
〉〉
. (31)

The contraction rules of two operators in this equation are determined in terms of the
meromorphic functions ζ(β), ζ †(β), given in appendix B, as follows (we assume that
β = β1 − β2):

〈〈Za(β1)Zb(β2)〉〉 = 〈〈
Z†

−a(β1)Z†
−b(β2)

〉〉 = ζ(β)
sinh

(
β

2 + iπ
2N

(a − b)
)

sinh β

2

,

〈〈
Za(β1)Z†

b(β2)
〉〉 = 〈〈

Z†
−a(β1)Z−b(β2)

〉〉 = ζ †(β) cosh

(
β

2
− iπ

2N
(a + b)

)
.

(32)

3 Matrix elements of operators Za and Z†
a are defined by rules (30) and (31), respectively. A more explicit definition

of these operators can be found in [23].
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4.2. Parafermionic current actions

Let us in short comment the algebraic structures, encoded in the prescription for form factors
described above. We obtained equation (28) starting from the thermal operators form factors
case m = −m̄ and n′ = n [23] as a result of the parafermionic current actions [7] on the
bosonic operators:

Z†
a(β)

(ψ)−→ Z†
a(β) e

β

N
− iπ

2N
a, Zb(β)

(ψ)−→ Zb(β) e− β

N
− iπ

2N
b,

Z†
a(β)

¯(ψ)−→ Z†
a(β) e− β

N
+ iπ

2N
a, Zb(β)

¯(ψ)−→ Zb(β) e
β

N
+ iπ

2N
b,

Z†
a(β)

(ψ)†−→ Z†
a(β) e− β

N
+ iπ

2N
a, Zb(β)

(ψ)†−→ Zb(β) e
β

N
+ iπ

2N
b,

Z†
a(β)

¯(ψ)
†

−→ Z†
a(β) e

β

N
− iπ

2N
a, Zb(β)

¯(ψ)
†

−→ Zb(β) e− β

N
− iπ

2N
b.

(33)

Such a prescription determines a set of maps in the space of multiparticle form factors, for
example4

〈0|�(k)
m,m̄|{β}, {β ′}〉(n,n′)

(ψ)−→ 〈0|(ψ)�
(k)
m,m̄|{β}, {β ′}〉(n−1,n′). (34)

This relation and similar relations for other parafermionic current actions are understood as
follows. We assume that the multiparticle form factors for the field �

(k)
m,m̄ are given as matrix

elements of a linear combination of products of n operators Zb(β) and n′ operators Z†
a(β).

Then, the form factors of the field (ψ)�
(k)
m,m̄ will be given by the modified bosonization

prescription, where the number of antiparticles is less by one, and the change (33) is provided
for each of Za and Z†

a operators. One can see that this prescription obviously agrees with
equation (28). Equation (33) was obtained from the deformed parafermionic action. For this
reason, the following identification was proposed for l, l̄ = 0, 1, . . . , k in [7]:

〈0|�(k)

k−2l,−k+2l̄
|{β}, {β ′}〉(n,n′) = 〈0|(ψ †)l(ψ)l̄μk|{β}, {β ′}〉(n,n′). (35)

The validity of this equation for multiparticle form factors with m̄ = −m was checked by
comparing a prescription for the form factors (27)–(32) with the form factors of the scaling
fields on the left-hand side of this equation, obtained in the prescription for the deformed W

algebra primaries [33]. We also get a clear evidence of the correctness of this identification
by studying the correlation functions of the order and disorder fields in [7]5. We consider
equation (35) as an off-critical analogue of equation (20).

It is possible to further reproduce the study of the structure of the space of form factors
of scaling fields in an analogy with the correspondent algebraic description of CFT. We note
here that together with equation (20), the form factor prescription (27)–(32) also satisfies the
charge conjugation condition (22). Using the ZN symmetry condition ψ = �

(N)
N−2,−N , it is

possible to derive the form factors of the parafermionic currents. A simple observation is that
these matrix elements are related to the form factors of the field �

(2)
2,0 = (ψ)ε1 as follows (see

also [29]):

〈ψ |{β}, {β ′}〉(n−1,n) = λ

√
2

N

(
n−1∑

e−βj +
n∑

e−β ′
j

)−1 〈
�

(2)
2,0

∣∣{β}, {β ′}〉
(n−1,n)

. (36)

4 We use in equation (34) the conformal notations (ψ)�
(k)
m,m̄, since this equation is a perturbed analogue of

equation (19).
5 Moreover, we demonstrated in [7] that the deformed parafermionic currents, acting on the deformed vertex
operators, also reproduce VEVs for perturbed W algebra primaries and, in particular, explain the factorized form of
the resulting VEVs (56) of the fields �

(k)
m,m̄.

11
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This equation is an off-critical analogue of the quantum equation of motion (11) for the
perturbed parafermionic currents:

∂

∂z̄
ψ(z, z̄) = λ

√
2

N
(ψ)ε1(z, z̄) = λ

√
2

N
�

(2)
2,0(z, z̄). (37)

In the general multiparticle case, this equation follows from the trigonometric function
identities. Further, we will use equation (37) in the short-distance expansion.

Our next comment on a mapping between form factors and interpreting our form factors
as matrix elements of the scaling fields is as follows. Formally applying the prescription of
[7], we arrive at the fact that the null vectors equation (16) survives after the perturbation (see
[22], where a similar phenomenon was studied in the sine-Gordon model context). It can be
directly checked that for perturbed fields, we have relations

A 1+k
N

μk = 0, Ā
†
1+k
N

μk = 0. (38)

The first equation here follows from the parafermionic currents action procedure, introduced
in [7]. Indeed, one can check that taking the α → 0 limit in the expression

〈
A 1+k

N
�

(k)
k,−k

∣∣{β}, {β ′}〉
(n−1,n)

∼ lim
α→∞ e− 1+k

N
α

〈〈
n−1∏

B(βj )
(k)
k,−k

n∏
B†(β ′

j )
(k)
k,−kB(α)

(k)
k,−k

〉〉
, (39)

we get exact zero for an arbitrary particle number n. For the second equation, after the
application of the Wick theorem, we find that the condition

〈0|Ā†
1+k
N

μk

∣∣β1, . . . , βs+1, β
′
1, . . . , β

′
s

〉 = 0, (40)

for the arbitrary 2s +1 particle matrix element of the scaling field Ā
†
1+k
N

μk , is reduced to proving

the following trigonometric identity:∑
{aj },{bj }

s+1∏
i=1

ai

s∏
j=1

bj e− iπ
N

(k+1)bj

s+1∏
i=1

s∏
j=1

cosh

(
βi − β ′

j

2
− iπ

2N
(ai + bj )

)

×
s+1∏
i<j

sinh

(
βi − βj

2
+

iπ

2N
(ai − aj )

) s∏
i<j

sinh

(
β ′

i − β ′
j

2
− iπ

2N
(bi − bj )

)
= 0,

which follows from equation (28).
Still, the null vector conditions, as well as other relations in the space of form factors

of scaling fields, have to be studied in depth, due to a possible appearance of the fields,
satisfying conditions (3) and (4). The following example illustrates the fact that we have to
be very careful with the analysis of the structure of the off-critical fields. We consider the
multiparticle form factors of the perturbed fields:

ψkψ̄
†
k = �

(N)
2k−N,N−2k.

The expressions for these form factors, computed by a direct application of equation (28),
up to a normalization, coincide, as functions of rapidities, with the corresponding results for
the field �

(2)
2k,−2k = �

(N−2)
2k−N,N−2k . The equality follows from the identities for trigonometric

functions. In this way, after the perturbation, we get, formally, that two fields have the same
form factors, while they are different at the criticality. This disagrees with the statement that
conformal and massive scaling fields should be in one-to-one correspondence [13]. The point
is that this formal coincideness of expressions for different fields happens in a very specific
case, in which the form factor prescription has to be worked out more carefully. Using the

12
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explicit values for the conformal dimensions (21), we see that the following relations between
the scaling dimensions of these fields take place:

2d
(0)
2k − 2d

(2)
2k = (2 − 2D1). (41)

Since D1 = �ε1 is the conformal dimension of the thermal operator ε1, this equation is exactly
condition (3) and the fields ψkψ̄

†
k are in the first-order resonance6 with fields �

(2)
2k,−2k , i.e. there

is an ambiguity (4) in its definition:

ψkψ̄
†
k ∼ ψkψ̄

†
k + const λ�

(2)
2k,−2k. (42)

Moreover, the spinless fields ψkψ̄
†
k formally have divergent expectation values; therefore, we

need to work out a regularized prescription for its normalized multiparticle matrix elements.
To introduce a well-defined form factor of the field ψkψ̄

†
k , we propose to use the freedom

in choosing the index N. Namely, let us provide an analytic continuation of the expression for
the multi-point form factor of this field, by changing N → N + ε, where the regularization
parameter ε is a small number, which will be set to zero in the end. After the change,
the vacuum expectation value becomes finite and proportional to 1/ε. We can divide the
ε-deformed expressions, obtained from equation (28), into the correspondent finite value of
the VEV and normalize the null point form factors to 1. The same analytic continuation and
normalization are provided for the field �

(2)
2k,−2k . Then, we propose to define the regularized

form factors of ψkψ̄
†
k as a result of the formal calculation:

lim
ε→0

1

ε

⎛⎝〈
ψkψ̄

†
k

∣∣{β}, {β ′}〉(ε)
(n,n)〈

ψkψ̄
†
k

〉(ε) −
〈
�

(2)
2k,−2k

∣∣{β}, {β ′}〉(ε)
(n,n)〈

�
(2)
2k,−2k

〉(ε)
⎞⎠ . (43)

This is one of the possible prescriptions in fixing the ambiguity (4). In the ultraviolet (UV)
regime, we should provide an analogous regularization for the field ψkψ̄

†
k , which leads to

vanishing expectation values of regularized fields.
To support this construction, we applied the regularization procedure for finding the form

factors of the descendant field E1 = W
(3)
−1 W̄

(3)
−1 ε1 in the N = 4 model7. The field E1 in this

theory satisfies the first-order resonance condition with the identity operator. For form factors
of this field, the regularization prescription provides a correct result, which can be calculated
from another consideration. Namely, for general N, the form factors of the field E1 have a
very simple property. It can be expressed in terms of form factors of the first energy field in
the following way:

〈E1|{β}, {β ′}〉(n,n) =
∑

(e2βj − e2β ′
j )∑

(eβj + eβ ′
j )

∑
(e−2βj − e−2β ′

j )∑
(e−βj + e−β ′

j )
〈ε1|{β}, {β ′}〉(n,n). (44)

This equation comes from the fact that in CFT [27], the energy field ε1 has a null vector at
level 2. This means that there is a linear relation between the descendants [19] W

(3)
−2 ε1 and

L−1W
(3)
−1 ε1. Now we have to take into account the fact that the modes W

(3)
−2 of the W3(z)

current act on the energy field ε1 as the spin-2 integral of motion. Due to its even spin, it is
odd with respect to the charge conjugation transformation and have the form〈

W
(3)
−2 ε1

∣∣{β}, {β ′}〉
(n,n)

=
n∑

(e2βj − e2β ′
j )〈ε1|{β}, {β ′}〉(n,n). (45)

This completes the explanation of equation (44).

6 The same is true for the ZN charged fields ψkψ̄k and �
(2)
2k,2k .

7 This theory can also be considered as a well-known sine-Gordon model in the reflectionless point, with the
parameter β2 = 1

3 . The form factors of the exponential fields in this case can be extracted from the results of
[22, 33].
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We propose to study another relation, following from the null vector conditions, in a
separate publication.

4.3. Explicit expressions for form factors

Finally, let us derive explicit expressions for the form factors, which will be used in the
correlation function studies. With definitions (27)–(31), equation (27) for the disorder fields
has a conventional form:〈
�

(k)
m,−m

∣∣{β}, {β ′}〉
(n,n)

= (−1)n(
2 sin π

N

)n e
m
N

∑
(βj −β ′

j )
∑

{aj ,bj }

∏
j

ajbj e
iπ
2N

((k+1)(aj −bj )−m(aj +bj ))

×〈〈
Za1(β1) · · ·Z†

bn
(β ′

n)
〉〉〈

�
(k)
m,−m

〉
. (46)

As an example, we write down the explicit expressions for the first form factors of the disorder
operator:

〈μk|0〉 = 〈μk〉,
〈μk|β1, β

′
1〉1†1 = −ζ †(β1 − β ′

2)〈μk〉{k} e
N−2k

2N
(β1−β ′

1),

〈μk|β1, β2, β
′
1, β

′
2〉1†1†11 = ζ(β12)ζ(β ′

12)

2∏
ij

ζ †(βi − β ′
j )

× 1

4
〈μk〉{k}2 e

k−N
N

(β1+β2)− k
N

(β ′
1+β ′

2)

×
(

ν1τ1 +
{2}{k + 1}

{1}{k} ν2 +
{2}{k − 1}

{1}{k} τ2

)
, (47)

where νj and τj are j th symmetric polynomials of the variables eβi and eβ ′
i , respectively,

and we introduced the notation {a} = sin
(

πa
N

)
. In equation (47), we have written explicitly

the normalization of scaling fields to its VEV [33]. The exact values of VEVs for the fields
important for us [7] will be written below. It is rather a direct task to find out expressions for
the higher particle form factors. However, in our numerical computations, we will not need it.

Another simplest example is the case of parafermionic currents. Our candidate for the
parafermionic current form factors can be easily found by using equation (28):

〈ψ |β ′
1〉1 = Cψ e

N−1
N

β ′
1 ,

〈ψ |β1, β
′
1, β

′
2〉1†11 = −Cψ {2}ζ(β ′

12)

2∏
j

ζ †(β1 − β ′
j ) e

1
N

β1+ N−2
N

(β ′
1+β ′

2),

〈ψ |β1, β2, β
′
1, β

′
2, β

′
3〉1†1†111 = 1

4
Cψ {2}2ζ(β12)

3∏
i<j

ζ(β ′
ij )

×
2∏
i

3∏
j

ζ †(βi − β ′
j ) e( 1

N
− 1

2 )(β1+β2)− 1
N

(β ′
1+β ′

2+β ′
3)

×
(

τ2 + ν1τ1 + ν2

(
1 + 2 cos

2π

N

))
, (48)

etc. By Cψ we denoted the normalization factor, determining the one-particle form factor. We
will fix it explicitly in equation (71).
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5. Correlation functions

In this section, we develop the conformal perturbation theory and compare long- and short-
distance asymptotics of correlation functions of scaling fields. Our aim is to demonstrate that
the asymptotics are in agreement with each other at the intermediate distances and, therefore,
give an effective description of correlation functions at all scales. See [1, 7, 31, 40, 41] for
other results in this direction.

Before proceeding further, let us make an important comment. The long-distance behavior
of correlation functions is described in terms of the mass of the lightest particle parameter.
The exact relation between the mass and the coupling constant can be derived via the TBA
technique [2]. For the sine-Gordon model, this was done in Zamolodchikov’s paper [3]. In our
case, the mass–coupling constant relation can be found from the results of [35]. To simplify
expressions, here and below we use the notations

γ (a) = �(a)

�(1 − a)
, u = 1

N + 2
, κ = M

�(2/N)�(1 − 1/N)

�(1/N)
. (49)

Applying these definitions, the explicit relation between the parameters M and λ is given as
follows:

(2πλ)2 = κ4(1−2u)γ (u)γ (3u). (50)

5.1. Conformal perturbation theory and exact VEVs

In this subsection, we consider the basic notions of the conformal perturbation theory [1] and
give explicit values of the VEVs [7, 8] of the fields, which we will need in the computations.

In what follows, we develop the conformal perturbation theory [1] for the two-point
functions of scaling fields �a and �b:

〈�a(z, z̄)�b(0)〉 =
∑

l

C
Ol

a,b(z, z̄)〈Ol(0)〉, (51)

where C
Ol

a,b(z, z̄) are the structure functions and operators Ol form the basis in the space of

scaling fields. Functions C
Ol

a,b(z, z̄) can be expanded in the perturbation series

C
Ol

a,b(z, z̄) = |z|2�Ol z−��a −��b z̄−�̄�a −�̄�b

(
C

(0)Ol

a,b + λ|z|2(1−D1)C
(1)Ol

a,b + · · · ),
where the coefficients C

(0)Ol

a,b are the structure constants from the conformal fields theory,

while the first-order corrections C
(1)Ol

a,b can be expressed through the integrals of correlation
functions in CFT:

C
(1)Ol

a,b =
∫

d2y〈�a(0)�b(1)ε1(y, ȳ)Ol(∞)〉. (52)

The vacuum expectation values 〈Ol〉 of the scaling fields Ol , appearing in equation (51), have
a non-perturbative nature [1]. These fundamental quantities depend on the normalization
prescription for the fields. We find VEVs, assuming that the scaling fields satisfy the standard
conformal normalization prescription:

〈O(z, z̄)O†(0)〉 = |z|−4�O + · · · , |z| → 0. (53)

The exact VEVs for physically important operators �
(k)
m,m̄ and Ek = W

(3)
−1 W

(3)

−1εk in the scaling
ZN Ising model were found in [7, 8], following the approach of [4, 26, 35]. The vacuum
expectation values for the disorder fields are

〈μk〉 = κ2dk exp
∫ ∞

0

dt

t

(
sinh kut sinh(N − k)ut

sinh t tanh Nut
− 2dk e−2t )

)
. (54)
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It is interesting that for even values of k, the above integral can be calculated, giving

〈μ2k〉 = κ2d2k

(
γ
(

1
N+2

)
γ
(

2k+1
N+2

))1/2 (
N + 2

N

) k(N−2k)

N
k∏

i=1

γ
(

2i−1
N

)
γ
(

2i−1
N+2

) . (55)

For a general case, �
(k)
m,−m = (ψ †)l(ψ)lμk , where m = k − 2l, the vacuum expectation values

of fields are elegantly expressed in terms of 〈μk〉 as〈
�

(k)
m,−m

〉
〈μk〉 =

(
κ(N + 2)

N

) k2−m2

2N
l−1∏
i=0

(i + 1)γ
(

i+1
N

)
(k − i)γ

(
k−i
N

) . (56)

In particular, the VEVs of thermal fields εk = (ψ)k(ψ)kμ2k correspond to the m = 0 case in
the above equation:

〈εk〉 = κ2Dk

(
N + 2

N

)k
(k!)2

(2k)!

(
γ ((2k + 1)u)

γ (u)

) 1
2

×
k∏

i=1

γ 2
(

i
N

)
γ
(

2i
N

)
γ ((2i + 1)u)

. (57)

We also obtained the exact result for the expectation values of the normalized descendent

fields Ek = W
(3)
−1 W

(3)

−1εk:

〈Ek〉
〈εk〉 = κ2 (N + 2)2

2N

�2
(
1 + k+1

N

)
�2

(
1 − k

N

)
�2

(
1 − k+1

N

)
�2

(
1 + k

N

) �
(
1 + 2k

N

)
�

(
1 − 2k+2

N

)
�

(
2 − 2k

N

)
�

(
2 + 2k+2

N

) . (58)

5.2. Correlation functions 〈μ1(x)μ1(0)〉
In our previous paper [7], we studied long- and short-distance asymptotics of the correlation
functions

〈
σ1(x)σ

†
1 (0)

〉
and

〈
μ1(x)μ

†
1(0)

〉
of order and disorder fields. For completeness, we

collect the correspondent ultraviolet expansion data in appendix A. We found that IR and
UV asymptotics of the correlators match at the intermediate distances. This confirms our
expressions for VEVs as well as form factor expressions.

In this subsection, we want to discuss a more complicate case of the correlation function,
including two disorder fields 〈μ1(x)μ1(0)〉. We found that studying this case is rather
instructive, since it gives an example, where the resonance fields (3) and (4) appear at the
short-distance expansion for all integer N = 2, 3, . . . .

The long-distance expansion of this correlation function is provided in a standard way. In
a two-particle form factor approximation, we have the spectral decomposition

〈μ1(z, z̄)μ1(0)〉 = 〈μ1〉2 +
∫

dθ1 dθ2(〈μ(z, z̄)|θ1, θ2〉1,1†〈μ†(0)|θ2 + iπ, θ1 + iπ〉1,1†

+ 〈μ(z, z̄)|θ1, θ2〉1†,1〈μ†(0)|θ2 + iπ, θ1 + iπ〉1†,1) + · · · . (59)

Studying the short-distance behavior is more involved. Indeed, we have the following
leading terms in the conformal perturbation theory expansion (51):

〈μ1(z, z̄)μ1(0)〉 = Cμ2
μ1μ1

(r)〈μ2〉 + Cη
μ1μ1

(r)〈η〉
+ Cψψ̄

μ1μ1
(r)

〈
ψψ̄ †〉 + · · · , |z| = r, (60)

where we introduced the notation η for the field η = �
(2)
4,2. The leading contribution to the

correlator (60) at the short distances comes from the zero-order term C(0)μ2
μ1μ1

(r)〈μ2〉 of the
perturbation theory. It can be computed using CFT structure constants, found in [9], and
the exact vacuum expectation value for the second disorder field μ2 (54):

C(0)μ2
μ1μ1

(r)〈μ2〉 = r−2d1
γ

(
1
N

)
γ (2u)

(rκ)
2 N−2

N(N+2)

(
N + 2

N

) N−2
N

, u = 1

N + 2
. (61)
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At the first-order perturbation theory, we have the term including the field η. The contribution
from this field to the perturbative expansion can be expressed in terms of the product of the
CFT structure constants C(0)μ2

μ1μ1
C(0)η

μ2ε1
, multiplied by the simple two-dimensional integral over

y from the correlation function

〈μ1(0)μ1(1)ε1(y, ȳ)η(∞)〉CFT = |y|2u|1 − y|2u.

Using the exact result (56) for the VEV of the field η = �
(4)
2,−2, we obtain the analytic result

for this term in the first-order approximation:

Cη
μ1μ1

(r)〈η〉 = r−2d1

16
(rκ)

2 (N+2)2−9
N(N+2)

γ
(

1
N

)
γ

(
3
N

)
γ 3 (u) u2

(1 + 2u)2γ (3u)γ 2(2u)

(
1

Nu

)2 N−1
N

. (62)

A more difficult task is to compute the first-order correction to the structure function Cμ2
μ1μ1

(r)

and the contribution, coming from the term ψψ̄ †. We note that the conformal dimensions of
the fields ψψ̄ † and μ2 satisfy the relation

2�ψ − 2�μ2 = 2
N

N + 2
= 2

(
1 − �ε1

)
. (63)

The first-order resonance condition (3) now appears at the short-distance expansion.
Equation (63) basically means that two terms in the perturbation theory will have the same
powers of r. Whenever this happens, we expect that divergences coming from the contributions
from the term Cψψ̄†

μ1μ1
(r)〈ψψ̄†〉 should be canceled by divergences appearing from the first-

order correction to the structure function C(1)μ2
μ1μ1

(r)〈μ2〉. This phenomenon, in general, should
lead to logarithmic terms in a perturbative expansion.

The appropriate contributions to the resonance terms can be computed within the ZN Ising
model settings by providing the analytic continuation in the parameter N, as was discussed
before, i.e. we can compute the contributions after the change N → N + ε and then consider
the limit ε → 0. To check the validity of this approach, we also perform the computations in a
different method. We use the fact that parafermionic CFT with the central charge (1) belongs
to the series of W algebra symmetric unitary minimal CFT WM(p)

N , where the parameter p is
chosen to be p = N + 1 [27]. The field theory (2), from the view point of this model, is the
simplest representative of the series of integrable perturbations of WM(p)

N minimal models by
the primary field with the conformal dimension D

(p)

1 = 1 − N
p+1 , which, in our case, coincides

with the first energy operator. To study the contributions of the resonance fields, we can
do the deformation of WM(p)

N by changing the parameter p in such a way that the variable
u = 1/(p + 1) would have the form

uε = 1

N + 2
− ε.

For small non-zero ε, the expressions for the contributions of the resonance fields are finite
and well defined. The result of computations can be written in the following way:

C(1)μ2
μ1μ1

(r)〈μ2〉 = r−2d1(rκ)
2
N

(N−2+(N+2)uε)
2

N2

(1 − (N + 1)uε)
2

(1 − Nuε))2

× γ
(

1
N

)
γ (Nuε)

γ (2uε)

γ (uε) γ 2
( 1+Nuε

2

)
γ 2

( 1−(N−2)uε

2

)
γ
( 1−(N+2)uε

2

)
γ ((N + 1)uε)(Nuε)

N−2
N

×(1 + ε(N + 2)χ0 + O(ε2)). (64)

To simplify the resulting expression, we introduced a shorthand notation for the term in the
last line:

χ0 = −1

2

(
ψ

(
1

2
+

(N − 2)u

2

)
+ ψ

(
1

2
− (N − 2)u

2

)
− 2

N
γE + (N + 2) log

(
N + 2

N

))
.
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The symbol γE is reserved for Euler’s constant and ψ stands for the logarithmic derivative
of the gamma function ψ(x) = �′(x)/�(x). (Unfortunately, this standard notation conflicts
with the usual symbol, which we choose for the parafermionic current ψ(z).)

The contribution, which comes from the term proportional to 〈ψψ̄ †〉, is found to be of a
similar form:

Cψψ̄†

μ1μ1
(r)〈ψψ̄†〉 = r−2d1(rκ)2 N−2

N
(2−(N+2)uε)

(1 − (N + 1)uε)
2

(1 − 2uε)2

×
(

1

Nuε

)2 N−1
N γ (Nuε)

γ (uε)
γ

(
1 − Nuε

2

)
γ

(
1 − (N − 2)uε

2

)
× γ

(
1

Nuε

− 1 − 1

N

)
γ

(
N + 2

N
− 1

Nuε

)
× (1 + ε(N + 2)χ1 + O(ε2)), (65)

where

χ1 = −1

2

(
ψ

(
1

2
+

Nu

2

)
− ψ

(
1

2
− Nu

2

))
+ χ0.

Now we look for the regularized expressions in the limit ε → 0.
It can be derived from equations (64) and (65) that both terms have a single pole at ε = 0.

However, as we expected from a general consideration, the sum of residues at this pole is
zero, and the total contribution of these resonance terms to the correlation functions is well
defined in the ε → 0 limit. Computing the limit, we find that the correctly defined sum of two
resonance terms is given as

[
C(1)μ2

μ1μ1
(r)〈μ2〉 + Cψψ̄†

μ1μ1
(r)〈ψψ̄†〉]reg = γ

(
1
N

)
2N2

r−2d1(rκ)2 N−1
N

(
N + 2

N

) N−2
N

×
(

8(γE − 1) + 4N log rκ e
3
2 γE−1 + 2(N + 2)

(
ψ

(
1

N

)
+ ψ

(
− 1

N

))
−N

(
ψ

(
2

N + 2

)
+ ψ

(
N

N + 2

)))
. (66)

The numerical data for long- and short-distance asymptotic expansions are shown in
figure 5 for the case N = 7. The dashed curve is for UV asymptotics, while the full line
denotes the form factor decomposition, up to two particles. We observe that there is the
asymptotics match at the intermediate distances. We found that in the region 0.01 � Mr � 1,
the long- and short-distance asymptotics agree with a relative error of around 1%. This, rather
good, numerical preciseness confirms our hypothesis on the identification of form factors, as
well as the short-distance regularization prescription.

For other values of the parameter N, we provided similar numerical computations. We
found that the relative error decreases with an increase of number N. For large N, the error
becomes smaller. For example, for the N = 11 case, it is already less than 0.1%. The
agreement between data can be further improved by taking into account higher particle form
factors; however, this is beyond the scope of this paper.

In the limit of large parameters N, we find that our short-distance expansion function
behaves as

〈μ1(z, z̄)μ1(0)〉
〈μ1〉2 = 1 +

1

N2

(
−2� +

(
�2 − 4� +

9

2

)
M2r2

)
+ · · · , (67)
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Figure 5. Correlation function of disorder fields at N = 7.

where � = log
(

MreγE+1

2

)
. We checked, using the Mellin transform, that our form factor

expression leads to the same expansion at the small distances up to the order N−3. In the next
orders, new corrections can appear from the higher particle form factors.

Another non-trivial test for the correctness of our expressions is the limit to the Ising
model point N = 2. In the case, when N → 2, our ultraviolet asymptotics leads to the
following answer:

〈μ1(z, z̄)μ1(0)〉 = 1

r
1
4

(
1 − Mr

2
log

Mr eγE

8
+ · · ·

)
, (68)

which agrees with the known short-distance expansion for the Ising model disorder parameter
correlation function [15, 36].

5.3. Correlation functions of parafermionic currents

In this subsection, we would like to compare short- and long-distance asymptotics for the
two-point correlation functions of parafermionic currents ψ and ψ † at the region Mr ∼ 1.
We think that a consideration of this case might be interesting because the correlator of free
fermions is first of all one of the most simplest in the Ising model. Unlike the case of order
and disorder fields, it is given exactly by the Bessel function, i.e. by the solution of a linear
equation, which is simpler than the Painleve equation [15, 36]. On the other hand, this is one
of the few examples of correlation functions of operators with fractional spins.

We recall that in the unperturbed CFT, the currents ψ(z) and (ψ †) have conformal
dimensions (�1, 0) and (�N−1, 0), defined by equation (12). In the ultraviolet region the
correlation function of these fields is expected to have a form (see equation (18))

〈ψ(z, z̄)ψ †(0)〉 = z−2�1 + · · · , |z| → 0, (69)

which is a natural definition of the conformal normalization in the given case of operators with
non-trivial spins.

5.3.1. General N case. The leading contribution to the infrared asymptotics of the correlation
function of parafermionic currents comes from the one-particle form factor approximation. We
will see that it already leads to a nice agreement between the asymptotics at the intermediate
distances. Using the integral representation for the modified Bessel function, we can express
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the one-particle contribution in the following analytic form:

〈ψ(z, z̄)ψ †(0)〉 = 2C2
ψKN−1

N
(Mr) + · · · , z = r. (70)

For simplicity, we choose here and below the space coordinate to be zero, which corresponds
to the real z = r .

In equation (70), we took into account the fact that for the fields with spin, the vacuum
expectation values vanish. Our proposal for the exact value of the multiple C2

ψ , leading to the
conformal normalization (69) of parafermionic currents, is

C2
ψ = �

(
1 + 1

N

)
�

(
1 − 1

N

) (
N + 2

N

)2 N−1
N

κ2 N−1
N S2

2

(
2π +

2π

N

)
. (71)

The constant S2
(
2π + 2π

N

)
is defined by equation (B.1) in appendix B. This expression can be

obtained, following the ideas of [34]. It comes naturally from the analysis of the divergence
in the VEV of the operator ψψ̄ †, which can be effectively provided in the framework of the
W -symmetric CFT, perturbed by the adjoint field, by using the results of paper [35]. In another
way, it can be obtained by analyzing the deformed parafermionic currents’ normalization; see
[8]. Further, we will see that this normalization coincides with the known exact results for
N = 2 and N → ∞ cases. We also establish numerical checks, by matching the long- and
short-distance asymptotics for correlators for arbitrary N.

From the general arguments of the conformal perturbation theory [1], we found that the
short-distance expansion of the correlator of parafermionic currents has the form

〈ψ(z, z̄)ψ †(0)〉 = 1

z2�1

(
1 + (κr)2A1 + (κr)

4N
N+2 A2 + (κr)

4(N+3)

N+2 A3 + (κr)
4N
N+2 +2A4

+ (κr)
4(N+1)

N+2 +2A5 + (κr)
6(N+4)

N+2 A6 + · · · ). (72)

Here and below in this subsection, we use in the short-distance expansions the notation r = |z|.
For the computation of the coefficients Aj (j = 1, . . . , 6) in this equation, it is convenient to
use the quantum equations of motion (37):

∂

∂z̄
ψ(z, z̄) = λ

√
2

N
�

(2)
2,0(z, z̄). (73)

We recall that the fields �
(2)
2,0 = (ψ)ε1 and �

(2)
−2,0 = (ψ †)ε1 have different left and right

conformal dimensions
(
�μ2 ,�ε1

)
defined by equations (7) and (23) respectively.

To define coefficient A1, we integrate over z̄ the first term in the decomposition of the
following two-point correlation function:

〈∂̄ψ(z, z̄)ψ †(ζ, ζ̄ )〉 = λ

√
2

N

〈
�

(2)
2,0(z, z̄)ψ

†(ζ, ζ̄ )
〉
. (74)

In this prescription, the coefficient A1 is computed in a simple way from the CFT three-point
correlation function:〈

�
(2)
2,0(0)ψ †(1)ε1(∞)

〉
CFT

,

multiplied by the expectation value of the field ε1. An effective method of computation of
other coefficients in equation (72) is to integrate twice the series expansion for the following
correlation function:

〈∂̄ψ(z, z̄)∂̄ψ †(ζ, ζ̄ )〉 = 2λ2

N

〈
�

(2)
2,0(z, z̄)�

(2)
−2,0(ζ, ζ̄ )

〉
. (75)
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More explicitly, starting from the conformal perturbation theory expansion for the two-point
correlator〈
�

(2)
2,0(z, z̄)�

(2)
−2,0(ζ, ζ̄ )

〉 = |z − ζ | 4N
N+2

(z − ζ )2�1(z̄ − ζ̄ )2

× (CI (r) + Cε1(r)〈ε1〉 + Cε2(r)〈ε2〉 + CE1(r)〈E1〉 + Cε3(r)〈ε3〉 + · · ·), (76)

we obtain, by integration over z̄ and ζ̄ , the coefficient A2 from the coefficient CI . In a
similar manner, the coefficients A3, A5 and A6 are related, correspondingly, to the zeroth-
order structure functions Cε2〈ε2〉, CE1〈E1〉 and Cε3〈ε3〉 respectively. The coefficient A4 is
related to the first-order correction term C(1)ε1〈ε1〉.

Using the free field realization for conformal primary fields [9, 11], one can find an
integral representation for the leading corrections to the structure functions in expansion (75).
The integrals in the first-order perturbation theory can be taken by applying the technique from
[37]. The exact vacuum expectation values for the energy fields 〈εk〉(k = 1, 2, 3) and E1 are
given in equations (57) and (58) respectively. The results for numerical coefficients Ak can be
written as

A1 = −N + 2

2N2

γ
(

1
N

)2

γ
(

2
N

) ,

A2 = (N + 2)2

4N2(N − 2)
γ (u)γ (3u),

A3 = − 1

72

(N + 2)4

(N + 3)(N + 4)N3

γ (u)

γ (3u)

γ 2
(

1
N

)
γ
(

2
N

)
γ
(

4
N

) ,

A4 = − (N + 2)3

16N3(3N + 2)

γ 2
(

1
N

)
γ
(

2
N

) γ (u)γ (3u)JN,

A5 = − (N + 2)5(N − 4)

8(N + 1)(3N + 4)

1

(N + 4)2(N − 2)2N

γ 2
(

2
N

)
γ
(

4
N

) γ (4u)γ 2(u)

γ 2(2u)
,

A6 = − 1

2400

(N + 2)5

N4(N + 4)(N + 5)(N + 6)2

γ 2
(

1
N

)
γ 2

(
2
N

)
γ 2( 3

N
)

γ
(

2
N

)
γ
(

4
N

)
γ
(

6
N

) γ 2(2u)γ 2(u)

γ (3u)γ (4u)γ (5u)
.

(77)

Note that the coefficient A4 was computed analytically only for particular values of N. This is
because the multiple JN in this coefficient represents the contribution, which is given by the
rather complicate integral over the plane, from the CFT correlation function

JN = 1

π

∫
d2y

〈
�

(2)
2,0(1)�

(2)
−2,0(0)ε1(y, ȳ)ε1(∞)

〉
CFT

. (78)

The asymptotics of the integral JN , considered as a function of N, will be given for large values
of N further in equation (84).

In the following subsection, we discuss the particular cases of N, for which the correlation
function has specific features, including resonances.

5.3.2. Ising model N = 2 case. We first consider the consistency of our formulae for N = 2
with the known results from the Ising model. According to the fusion rules in the Ising model
case, there are no higher energy fields in the short-distance expansion. So, we have to restrict
ourselves to the first two terms coming with the coefficients A1 and A2. A formal substitution
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Figure 6. Parafermionic correlators at N = 2.00001.

N = 2 leads to a divergence which is, of course, expected from our previous consideration of
the resonance fields. When we consider the limit N → 2, we find that the residues at the pole

1
N−2 are canceled, and the resulting expansion for the correlator has a logarithmic scaling. Let
us assume that z = r is chosen to be real. Then, the N → 2 limiting value for the correlator
will have the form

〈ψ(z, z̄)ψ(0)〉 = lim
N→2

r−2 N−1
N

(
1 + (κr)2A1 + (κr)

4N
N+2 A2 + · · · )

= 1

r

(
1 +

(Mr)2

2
log

(
Mr

2
eγE− 1

2

)
+ · · ·

)
. (79)

This equation agrees with the form factor ultraviolet expansion, where the exact correlator is
given in terms of the modified Bessel function K1(r). In the numerical computations, we can
formally put N in the general coefficients A1 and A2 to be close to 2. Then, the long- and
short-distance expressions would match at the intermediate distances, as is expected. Since the
infrared expansion result is an exact one, it is instructive to see for our short-distance formulae
and efficiency of the analytic continuation prescription. For example, the curves depicted in
figure 6 correspond to N = 2.000 01.

In the figure, the dashed lines are given by the first three terms in the UV decomposition.
The full line, here and below, represents the one-particle form factor expansion. The
dependence on N, in a vicinity of the Ising model case value of N = 2, is smooth. Similarity
between long- and short-distance asymptotics of the Ising model case serves as one of the
confirmation, supporting the normalization constant C2

ψ (71).

5.3.3. Three-state Potts model N = 3 case. The model for N = 3 coincides with the
scaling three-state Potts model. Up to the normalization factors, the exact form factors for
parafermionic currents (as well as for other primaries) were computed for this model in [29].
The correlation functions of order and disorder fields in this model were also studied in
[7, 31].

According to the fusion rules for the N = 3 case, there are no energy fields ε2 and ε3

and we have to omit terms with the coefficients A3 and A6. We show in figure 7 that even
first three terms in the short-distance expansion lead to a rather good agreement between
correlation function asymptotics.
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Figure 7. Parafermionic correlators at N = 3.

In this case, we can improve the exact computations further. In particular, the coefficient
A4 can be calculated exactly, since the integral J3 can be taken analytically as

J3 = − 9
√

5�5
(

3
5

)
�4

(
1
5

)
16π2�3

(
2
5

)
�2

(− 1
5

) . (80)

Then, the contribution from this first-order perturbation theory term is given by the expression

(zκ)2+4 N
N+2 A4

∣∣
N=3,z=r

= 5

3 × 11 × 26

γ 2
(

1
3

)
γ 4

(
1
5

)
γ
(

2
3

)
γ 5

(
2
5

) (rκ)
22
5 . (81)

It is also possible to compute the second-order perturbation correction to the identity operator
in expansion (72), as well as the contribution of the descendant field T T̄ ; these VEVs can be
computed from the results of [38, 39]. With these corrections, and with the term taking the
coefficient A5 into account, the long- and short-distance expressions agree up to the distances
Mr = 3.

5.3.4. N = 4 model. The model for N = 4 describes a particular case of the Ahskin–Teller
model. For the parafermionic fields, proceeding as before, we find that the resonances appear
at the short-distance expansion, as well.

Namely, providing an analytic continuation of general expressions with parameter N,
we can easily see that the term with the coefficient A3 diverges at N → 4. However, the
divergence, coming from this term, is canceled by the singular part of the term with the
coefficient A4, since the integral JN has the following expansion, when N approaches 4:

JN = 4

3

1

N − 4
+

5

18
+ O(N − 4). (82)

In this case, we meet the resonance condition (3) between the operators ε2 and ε1. As in the
Ising model, let us look for an analytic continuation in N of the general expression. Finding
the regular, in the parameter N, expansion, we obtain

lim
N→4

(
(κr)4 N+3

N+2 A3 + (κr)2+4 N
N+2 A4

) = 3

26 × 7

γ
(

1
6

)
γ 2

(
3
4

) (rκ)
14
3 log

( rκ

2
eγ E− 13

28

)
. (83)

Again, the presence of fields, which are in the resonance, leads to the logarithmic dependence
of the short-distance approximation. Let us note that there is no divergence at the term A5:

lim
N→4

(κr)2+4Nu+4uA5 = − 3
1
2 × 35

2
1
3 × 210 × 5π

�2

(
1

3

)
(κr)

16
3 .
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Figure 8. Parafermionic correlators at N = 4.

Substituting these regularized expressions into the short-distance expansion, we get a well-
defined expansion. The numerical data (where the contribution from the second-order
correction was taken into account) are shown in figure 8.

The relative error between the asymptotic values in the region 0.0001 < Mr < 1 in our
numerical computations is less than 1%.

5.3.5. Large N case. The nice feature of the ZN models is that the correlation functions
in the ultraviolet and infrared regions (72) are in agreement for an infinite set of models
including those with an arbitrary integer N � 2. We propose in the large N limit the following
approximation for the multiple JN in equation (77):

JN = 18

5N

(
1 +

32

3N2
+ O

(
1

N3

))
. (84)

Taking the A4 term into account, we have, for the asymptotic expansion for correlation
functions at N → ∞ in the vicinity of r = 0, the following expansion:

M−2�1〈ψ(z, z̄)ψ †(0)〉∣∣
z=r

= 1

(Mr)2

(
T0(Mr) +

1

N
T1(Mr) + · · ·

)
. (85)

Here, the functions T0(x) and T1(x) are given by the expressions, which agree with the
one-particle form factor formulae for large N and small scales:

T0(x) = 1 − x2

4
− x4

16

(
log x + γE − 3

4

)
,

T1(x) = 2 log x − x2

2
(1 + log x)

+
x4

16

(
2

(
log

eγ

2
− 7

4

)
log x + 2 log2 eγ

2
− 5 log

eγ

2
+

13

4

)
. (86)

With these conventions, both short- and long-distance expansions produce similar-looking
curves for N > 6. The example of the correlation functions for the case N = 11 is given in
figure 9.

To show the difference between the asymptotics, we also draw the rescaled correlators
r2 N−1

N 〈ψψ †〉 in figure 10.
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Figure 9. Parafermionic correlators at N = 11.
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Figure 10. Rescaled parafermionic correlators at N = 11.

Let us note that the relative error for ultraviolet and infrared asymptotics at the region
0.000 001 < Mr < 1 becomes smaller with an increase of the number N. For example, for
the N = 7 model, the error in this region is 0.8%, while for N = 20 it is already 0.08%.
To deal with these small N cases, we considered the A4 term more accurately. Namely, we
provided the Pade approximation for the integral JN (78) between the known and fixed points
N = 4 and N = ∞, and found that the similarity between the asymptotics of the correlation
functions for small N is within 1% at distances 0.000 001 < Mr < 1.

6. Concluding remarks

In this paper, we studied the correlation functions of disorder fields and parafermionic currents
for scaling ZN Ising models and found that the long- and short-distance asymptotics approach
each other at the intermediate distances. On one hand, a similarity between ultraviolet and
infrared asymptotics gives an effective way of studying the basic behavior of the correlation
function of the theory at all distances. On the other hand, it confirms our construction of the
form factors of the scaling fields.
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We discussed algebraic relations in the space of form factors and outlined the set of
problems related to the form factors of the descendant fields8. In particular, we stress the
role of quantum equations of motion by showing that they appear naturally in the form factor
prescription. On the other hand, we demonstrated the fact that the equations of motion can be
a very powerful tool in studying the ultraviolet asymptotics, within the conformal perturbation
theory. Their application allows us to find coefficients in the short-distance asymptotics, which
are rather difficult to study by direct methods. Another useful method, which we applied in
the analysis of form factors and conformal perturbation theory, is the W -extended symmetry
of the model. The W symmetric models of CFT and their integrable perturbations are, in
general, rather complicated and we found that it is interesting that correlation functions can
be effectively studied for such models, at least, in the particular cases. We also stress the
necessity of a more deeper understanding of the fields, which satisfy the resonance condition.
We have shown that these fields have unusual properties in both the form factor approach and
the conformal perturbation theory, and have to be analyzed carefully.

In this paper, we did not consider ultraviolet expansions for correlation functions of
‘heavy’ fields Oa , which are in resonance with some field Ob (3)–(4). If we use the proposed
form factor regularization prescription for these fields, then the calculation of the short-
distance behavior for correlators becomes a more subtle problem, and terms, including log2 r ,
will appear in the short-distance expansion. The well-known example for this property is the
correlation function 〈ψψ̄(x)ψψ̄(0)〉 in the Ising model.

Another interesting phenomenon in the study of resonance fields is that sometimes, the
renormalization of primary fields is finite and does not require introducing the parameter ε for
the correct definition of such deformed primary fields off-criticality. We propose to describe
these problems in other publication.

Acknowledgments

We would like to thank V Belavin, M Lashkevich, S Lukyanov and F Smirnov for useful
discussions. We are grateful to E Onofri for his kind help in numerical computations. This
work was supported by RFBR grant (080100720), by RBRF-CNRS grants PICS-09-02-91064,
09-02-93106-CNRS and by the Program of support of leading scientific schools 2004.2003.2.
The visit of YP to LPTA, University of Montpellier II, was supported by the ENS Landau
Exchange Program. YP would like to thank the members of the Laboratory and especially A
Neveu for kind hospitality.

Appendix A. Short-distance expansion for order and disorder fields

For completeness, we also collect here the results [7] about the following correlation functions:

G+(x) = 〈
σ1(x)σ +

1 (0)
〉
, G−(x) = 〈

μ1(x)μ+
1(0)

〉
(A.1)

of order and disorder fields in scaling the ZN Ising model. We considered the leading terms
in the short-distance expansion:

G±(x) = r−4d1
(
CI

± + C
ε1± 〈ε1〉 + C

ε2± 〈ε2〉 + C
E1± 〈E1〉 + · · · ). (A.2)

8 Similar problems were independently discussed in paper [43]. See also [41, 42].
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Up to the first-order perturbation theory, the structure functions entering this expression are

CI
± = 1 ± λπr2(1−2u)(γ (u)γ (3u))1/2γ (4u)

2(1 − 4u)2γ 3(2u)
,

C
ε1± = ∓ r4u(γ (u)γ (3u))1/2

2γ (2u)
+

λπr2u2γ (4u)γ 4(u)

4γ 4(2u)
,

C
ε2± = ∓r12u λπr2(1−2u)u2γ 3(u)(γ (5u))1/2

12(1 + 2u)2γ 2(2u)(γ (3u))1/2
,

C
E1± = −r2+4u u(1 − 4u)(γ (u)γ (3u))1/2

2(1 + 2u)(1 − 2u)γ (2u)
.

(A.3)

Note that the Ising model correlation function short-distance expansions [15, 39] agree with
the N → 2 expressions of these correlators as well9.

Appendix B. Two-particle form factors

Let the contour C go from infinity above the real axe, then around zero and then to infinity,
below the real axe. Introduce the notation

S2(x) = exp
1

2

∫
C

dt

2π it

sinh(x − 2π)t

sinh2(πt)
log(−t). (B.1)

Then the functions ζ (†), appearing in equation (32), read as

ζ(β) = i sinh
(

β

2

)
2 sinh

(
β

2 + iπ
N

)
sinh

(
β

2 − iπ
N

) S2
(
iβ + 2π + 2π

N

)
S2

(−iβ + 2π
N

)
S2

2

(
2π + 2π

N

) ,

ζ †(β) = 1

cosh β

2

S2
2

(
2π + 2π

N

)
S2(iβ + 3π + 2π

N
)S2

(−iβ + π + 2π
N

) .

(B.2)
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